About Us


 Significant developments in molecular biology materialized in the second half of the 20 century,leading to rapid progress in the fundamental understanding of organisms,which are systems based on genomes. In response,the 21 century is being called the age of life innovation - the age of applied life science. However, as biological phenomena are complex, they cannot be understood or applied simply by parsing them into numerous constituent molecules and fundamental processes and simplifying them in order to identify principles. Rather, it will be necessary to analyze complex biological phenomena as a whole,clarify the numerous elements that are involved and their relationships, and determine methods for their regulation. This is the kind of technological innovation that will be imperative in leading the way in the age of life innovation.

 The rapid advances in technologies for DNA sequencing,omics analysis,and imaging in recent years have enabled comprehensive analysis of a wide variety of biological macromolecules for the first time,and paved the way for the analysis of complex biological phenomena as a whole. Moreover, massive data analysis of biological molecules, which was simultaneously realized,was found to be the focal point of life innovation. In the age of informationoriented life science, the innovation of information technology will be essential for understanding the numerous elements that are involved in biological phenomena and their interrelationships, as well as for examining their regulation.

 Medicine has always been at the forefront of applied life science because of its urgent need, and there is no exception in the age of information-oriented life science. The marked progress being made in the acquisition of personal genomes in humans has enabled the rapid estimation of mutations related to diseases, and its clinical applications are being investigated. In addition, due to the accumulation of a substantial amount of phenotypic information in the form of medical care information,humans are thought of as the most suitable subjects of research involving novel information technology. Accordingly,in the age of information-oriented life science,it is expected that the field of medical science will lead the development of other fields.

 Given this awareness of the modern age, the department of Medical Genome Sciences and the department of Computational Biology have been merged, resulting in the establishment of a unique new major that is unprecedented in Japan. The objectives of this new major are to lead the way in information-oriented life science while significantly contributing to life innovation, and to cultivate personnel capable of translating the results in the clinical setting. To this end,we believe that it is necessary to develop personnel with a novel specialty by actively employing on-the-job training in state-of-the-art informatics and medical science research settings and implementing a basic education environment for integrating information science and medical science. This kind of personnel is required not only in medicine, but also in other technical fields such as agricultural sciences, pharmaceutical sciences, environmental studies and biotechnology. The ideal objective of our new major, as the only major in Japan able to cultivate such personnel,is to extensively supply personnel who will contribute to information-oriented life science and life innovation while leading research in Japan in the 21 century,which has been called the age of applied life science.

Director, Computational Biology and Medical Sciences
Koji Tsuda

About Us

The University of Tokyo
Graduate School of Frontier Sciences, The University of Tokyo

Page Top