情報生命科学群/兼担豊島研究室
(理学系研究科生物科学専攻 システム神経科学研究室)
-
豊島 有 准教授
- 研究キーワード
- システム生物学、情報処理、全脳神経活動計測、行動計測、生物画像処理、数理モデル化、線虫
環境に応じて行動を生み出す 神経回路の情報処理のしくみ
脳・神経系は生物がもつ最も高度な情報処理システムです。私たちの研究の目標は、脳・神経回路における情報処理の動作原理を明らかにすることです。感覚器を通じて取得された外部環境の情報は、神経回路において記憶などの内部状態と組み合わせて処理され、適切な行動の生成につながります。このときの神経活動と行動のダイナミクスを網羅的に計測し、相互の関係を定量的に調べることが、動作原理の解明に必要です。 生物は周囲の匂いや音などを頼りにして、餌場など好みの環境へ移動するナビゲーション行動を示します。こうしたナビゲーション行動は、外界の環境を感知して必要な情報を取捨選択し、行動として出力するという入出力関係が明確であり、神経回路における情報処理のしくみを明らかにするのに適した現象です。私たちが研究に用いている線虫C. elegansは、餌とともに経験した塩の濃度を記憶し、塩濃度勾配のある環境ではその塩濃度の領域に向かいます。また線虫の神経回路は302個の神経細胞から構成されており、それぞれの神経細胞の特徴や互いの接続も詳しく調べられています。しかしこのように、神経科学の基盤的情報が最も充実した生物であっても、それぞれの神経細胞がどのように情報を処理して行動を生み出しているかという、神経回路の動作原理については、あまりよくわかっていません。
全中枢神経活動の同時計測
私たちは、全神経活動の同時計測が、神経回路の動作原理を解明するためのブレークスルーになると考えました。線虫の体は小さく透明なので、微小な流路に線虫を閉じ込めて、蛍光顕微鏡で、神経活動を生きたまま計測することができます。そこで私たちは線虫の全中枢神経の活動を同時に観察できる4D顕微鏡などの実験技術(図1)と、撮影された立体動画像から神経活動を抽出する画像解析手法を開発してきました。また抽出された神経活動を個体間で比較したり、神経回路に対応付けるために、画像中の個々の細胞を既知の神経と対応付ける細胞同定の手法も開発してきました。こうした技術を統合し、全中枢神経活動の同時計測を実現しました。
神経活動と行動の同時計測
全脳神経活動の時系列データを独立成分分析などの手法で解析したところ、外部から与えた刺激はごく一部の神経にしか影響せず、他の大半の神経は自発的に活動しているようにみえることや、線虫の動きとの相関が強いことなどが明らかになりました。そこで私たちは、4D顕微鏡を電動ステージと組み合わせてtracking 4D顕微鏡を構築し、自由行動中の線虫を自動的に追尾しながら全脳神経活動を計測しています(図2)。また独自に開発した微小流路を用いて、特定の姿勢や行動を誘発しながら神経活動を計測することもできます。このようにして神経活動と行動を同時に計測することで、行動と関係する神経活動のパターンを特定し、その生成メカニズムを調べています。
数理モデル化とシミュレーション
神経細胞はお互いに接続して複雑なネットワークを形成しています。また神経活動は筋肉の収縮を通じて姿勢や行動を生み出しますが、その結果は固有受容感覚や外部環境の変化として、神経系へフィードバックされます。こうした多階層・多要素のシステムのダイナミクスを理解するには、定量的な数理モデル化とシミュレーションが重要です。 線虫は酸素濃度に勾配のある環境下では特定の酸素濃度に移動する性質を示します。私たちは、新たな実験手法と数理モデル化手法を開発して、酸素受容神経の神経活動を幅広い酸素濃度域にわたって忠実に再現することに成功しました。さらにこの神経モデルと既知の神経科学的知見に基づいて、酸素濃度の感知からナビゲーション行動までの実験データを忠実に再現する包括的な数理モデルを開発しました(図3)。 また深層学習を使った時系列モデルによって線虫の行動パターンを予測し、光遺伝学的な摂動と強化学習を組み合わせて、線虫の行動を制御する戦略を自動的に学習させることにも成功しました。